Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C

Identifieur interne : 007F93 ( Main/Repository ); précédent : 007F92; suivant : 007F94

A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C

Auteurs : RBID : Pascal:08-0092587

Descripteurs français

English descriptors

Abstract

A greener method to fabricate novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then addition of noble metal salts resulted in the formation of the core-shell structure depending on the core and shell material used for the preparation. Pt yielded a tennis ball kind of structure with a Cu core, whereas Pd and Au formed regular spherical nanoparticles. Au, Pt, and Pd formed cube-shaped structures with Fe as the core. Inversely, transition metals with noble metals, such as Pd, as the core also formed interesting structures; these structures were brushlike with indium as the shell and needle-like when Cu was employed as the shell. The method is general uses no surfactant or capping agent and can be extended to noble metals as cores and transition metals as shells. The core-shell nanocrystals were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV-vis spectroscopy. These nanocrystals have unique properties that are not originally present in either the core or shell materials and may have potential functions in catalysis, biosensors, energy storage systems, nanodevices, and ever-expanding other technological applications.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0092587

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C</title>
<author>
<name sortKey="Nadagouda, Mallikarjuna N" uniqKey="Nadagouda M">Mallikarjuna N. Nadagouda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Sustainable Technology Division, United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, MS 443</s1>
<s2>Cincinnati, Ohio 45268</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Varma, Rajender S" uniqKey="Varma R">Rajender S. Varma</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Sustainable Technology Division, United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, MS 443</s1>
<s2>Cincinnati, Ohio 45268</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">État du Mississippi</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0092587</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0092587 INIST</idno>
<idno type="RBID">Pascal:08-0092587</idno>
<idno type="wicri:Area/Main/Corpus">006E74</idno>
<idno type="wicri:Area/Main/Repository">007F93</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1528-7483</idno>
<title level="j" type="abbreviated">Cryst. growth des.</title>
<title level="j" type="main">Crystal growth & design</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascorbic acid</term>
<term>Biosensors</term>
<term>Catalysis</term>
<term>Copper</term>
<term>Core shell structure</term>
<term>Gold</term>
<term>Iron</term>
<term>Nanocrystal</term>
<term>Nanomaterial synthesis</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Palladium</term>
<term>SAED</term>
<term>Silver</term>
<term>Surfactants</term>
<term>Technological application</term>
<term>Transition elements</term>
<term>Transmission electron microscopy</term>
<term>Ultraviolet visible spectrum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure coeur couche</term>
<term>Palladium</term>
<term>Nanocristal</term>
<term>Nanomatériau</term>
<term>Acide ascorbique</term>
<term>Métal transition</term>
<term>Nanoparticule</term>
<term>Agent surface</term>
<term>Microscopie électronique transmission</term>
<term>Diffraction électron sélection aire</term>
<term>Spectre UV visible</term>
<term>Catalyse</term>
<term>Biodétecteur</term>
<term>Fer</term>
<term>Cuivre</term>
<term>Or</term>
<term>Argent</term>
<term>Synthèse nanomatériau</term>
<term>In</term>
<term>8116B</term>
<term>8107B</term>
<term>Application technologique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fer</term>
<term>Cuivre</term>
<term>Or</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A greener method to fabricate novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then addition of noble metal salts resulted in the formation of the core-shell structure depending on the core and shell material used for the preparation. Pt yielded a tennis ball kind of structure with a Cu core, whereas Pd and Au formed regular spherical nanoparticles. Au, Pt, and Pd formed cube-shaped structures with Fe as the core. Inversely, transition metals with noble metals, such as Pd, as the core also formed interesting structures; these structures were brushlike with indium as the shell and needle-like when Cu was employed as the shell. The method is general uses no surfactant or capping agent and can be extended to noble metals as cores and transition metals as shells. The core-shell nanocrystals were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV-vis spectroscopy. These nanocrystals have unique properties that are not originally present in either the core or shell materials and may have potential functions in catalysis, biosensors, energy storage systems, nanodevices, and ever-expanding other technological applications.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1528-7483</s0>
</fA01>
<fA03 i2="1">
<s0>Cryst. growth des.</s0>
</fA03>
<fA05>
<s2>7</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NADAGOUDA (Mallikarjuna N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VARMA (Rajender S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Sustainable Technology Division, United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, MS 443</s1>
<s2>Cincinnati, Ohio 45268</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2582-2587</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27261</s2>
<s5>354000173933400380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0092587</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Crystal growth & design</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A greener method to fabricate novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then addition of noble metal salts resulted in the formation of the core-shell structure depending on the core and shell material used for the preparation. Pt yielded a tennis ball kind of structure with a Cu core, whereas Pd and Au formed regular spherical nanoparticles. Au, Pt, and Pd formed cube-shaped structures with Fe as the core. Inversely, transition metals with noble metals, such as Pd, as the core also formed interesting structures; these structures were brushlike with indium as the shell and needle-like when Cu was employed as the shell. The method is general uses no surfactant or capping agent and can be extended to noble metals as cores and transition metals as shells. The core-shell nanocrystals were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), and UV-vis spectroscopy. These nanocrystals have unique properties that are not originally present in either the core or shell materials and may have potential functions in catalysis, biosensors, energy storage systems, nanodevices, and ever-expanding other technological applications.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure coeur couche</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Palladium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Palladium</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Acide ascorbique</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ascorbic acid</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Agent surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Surfactants</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Diffraction électron sélection aire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>SAED</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Spectre UV visible</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Ultraviolet visible spectrum</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espectro UV visible</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Catalyse</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Catalysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Biodétecteur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Biosensors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8116B</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Application technologique</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Technological application</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>052</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007F93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007F93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0092587
   |texte=   A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024